Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(4): 89, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520625

RESUMO

The handshake between the complex networks of matrix components in the tumor micro-environment (TME) is considered as a crucial event in the progression of several cancers including cervical carcinoma (CC). A number of studies report a connection between epidermal growth factor (EGF) and matrix component production. Studies demonstrate that the mechano-transduction trigger by collagen, influences the tumor cells to undergo epithelial-mesenchymal transition (EMT) and block the entry of drugs. We hypothesize that the intervention to prevent EGF triggered deposition of matrix components could sensitize several therapies for CC cells. We utilized morphological assessment, MTT assay, mitored tracking, acridine orange (AO)/ ethidium bromide (EtBr) staining and bromodeoxyuridine (BrdU) assay to measure the cell viability, mitochondrial activity, cellular apoptosis, and DNA synthesis. Clonogenic assay and scratch healing assay were executed to address the stemness and migratory potential. Detection of glycosaminoglycan's (GAGs), collagen, matrix metalloproteinase (MMP)-2/9 secretion and calcium (Ca2+) ions were performed to assess the production of matrix components. Finally, the interaction between EGFR and plumbagin was evaluated by employing molecular dynamics (MD) simulation. Pre-treating the cells with plumbagin inhibited the EGF-induced EMT along with reduction in cell proliferation, migration, clonogenesis and depletion of matrix components. The actions of EGF and plumbagin were more pronounced in HPV-positive CC cells than HPV-negative CC cells. This study identified that increased matrix production triggered by EGF-rich milieu is inhibited by plumbagin in human papilloma viral (HPV) 68 positive ME180, HPV 16 positive SiHa and HPV-negative C33A cell lines. Delivery of plumbagin directly to TME would effectively accelerate the clearance of CC cells, reduce metastasis and matrix abundance by employing targeted delivery to minimize the undesired effects of plumbagin.


Assuntos
Carcinoma , Naftoquinonas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colágeno , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Microambiente Tumoral , Neoplasias do Colo do Útero/tratamento farmacológico
2.
Med Oncol ; 40(12): 357, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964051

RESUMO

A need for effective implementation of cervical cancer (CC) even in developed countries insist the urge for developing an effective drug molecule to treat CC. Previously, we showed an inverse correlation between survival of CC patients and epidermal growth factor (EGF) receptor (EGFR) levels. Newer tyrosine kinase inhibitors to treat CC are being constantly pursued. In this context, the proposed study is an attempt to perform a comparative analysis using 20 phyto-components to determine the effective lead molecule. Molecular docking was utilized to determine the comparative efficacy of 20 phyto-components in binding to EGFR. It was then validated by cell viability, mitochondrial membrane potential, apoptosis, migration, and matrix metalloproteinase (MMP-2) in human papilloma virus (HPV) positive and HPV negative CC cells using top nine phyto-components based on computational screening. Computational analysis identified nine phyto-components out of which five compounds were effective in reducing the survival, mitochondrial membrane potential, apoptosis, migration, and MMP-2 secretion. EGCG, plumbagin, quercetin, emodin, and naringenin were identified as effective molecules in attenuating CC survival, proliferation, and migration.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Infecções por Papillomavirus/tratamento farmacológico , Metaloproteinase 2 da Matriz , Simulação de Acoplamento Molecular , Receptores ErbB/metabolismo
3.
Comput Biol Med ; 167: 107592, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976824

RESUMO

Establishment of human papilloma virus (HPV) infection and its progression to cervical cancer (CC) requires the participation of epidermal growth factor (EGF) receptor (EGFR) and fused toes homolog (FTS). This review is an attempt to understand the structure-function relationship between FTS and EGFR as a tool for the development of newer CC drugs. Motif analysis was performed using national center for biotechnology information (NCBI), kyoto encyclopedia of genes and genomes (KEGG), simple modular architecture research tool (SMART) and multiple expectation maximizations for motif elicitation (MEME) database. The secondary and tertiary structure prediction of FTS was performed using DISOPRED3 and threading assembly, respectively. A positive correlation was found between the transcript levels of FTS and EGFR. Amino acids responsible for interaction between EGFR and FTS were determined. The nine micro-RNAs (miRNAs) that regulates the expression of FTS were predicted using Network Analyst 3.0 database. hsa-miR-629-5p and hsa-miR-615-3p are identified as significant positive and negative regulators of FTS gene expression. This review opens up new avenues for the development of CC drugs which interfere with the interaction between FTS and EGFR.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , MicroRNAs/metabolismo
4.
Bioinformation ; 18(3): 273-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518129

RESUMO

It is of interest to evaluate the secondary metabolites using high performance thin layer chromatography (HPTLC) finger printing and Gas chromatography-Mass spectroscopy (GC-MS) in S. herbaceaextract. The powdered plant material extracted using different solvents were used for the qualitative analysis of alkaloids, flavonoids, terpenoids and saponins followed by HPTLC finger printing and GC-MS analysis. The components identified in the GC-MS were docked with estrogen receptor (ER) to identify the binding specificity of isolated compounds. The ethyl acetate extract of S. herbaceashowed the presence of high number of secondary metabolites when compared to other solvent system. The qualitative analysis of the plant material also showed the presence of carbohydrates, protein, amino acid, phenol, flavonoids, terpenoids, glycosides, saponins and steroids. The HPTLC finger printing analysis revealed the existence of alkaloid, flavonoid, terpenoid and saponin compounds and GC-MS. GC-MS was performed to identify the phytocomponents constituents in the extract. 8 phytocompounds were identified to analyse binding with ER. The binding affinity score (-6.8 kcal/mol) and interacting ER residues (28) the phyto compound di-n-octyl phthalate showed best docking score with ER α than the standard drugs lasofoxifene, and 4-hydroxytamoxifen. The binding affinity and number of interacting ER residues was -6.9 kcal/mol; 10 and -6.2; 11, respectively. The results identified the presence of ER antagonist in S. herbaceaand warrants further investigation to explore for treating ER regulated diseases.

5.
Curr Pharm Des ; 28(11): 922-946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35236267

RESUMO

INTRODUCTION: Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS: The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS: Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION: The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.


Assuntos
Hialuronoglucosaminidase , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Hialuronoglucosaminidase/metabolismo , Neoplasias Pancreáticas/genética , Prognóstico , Transdução de Sinais , Neoplasias Pancreáticas
6.
Int J Biol Macromol ; 194: 179-187, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848237

RESUMO

The sub-committee constituted by the Indian Council of Medical Research (ICMR) for the management of cervical cancer (CC) detailed in the consensus document (2016) reported CC as a significant cause of morbidity and mortality in women. The incidence of an increase in CC and associated mortality in women is a major cause of cancer. To date, human papilloma viral (HPV) infection accounts for more than 99% of CC. However, there are individuals infected with HPV do not develop CC. There is a greater correlation between HPV infection and upregulation of the epidermal growth factor receptor (EGFR) signaling cascade during the initiation, sustenance, and progression of CC. Therefore, EGFR is often targeted to treat CC using tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAB). The current review analyzed the existing clinical/pre-clinical studies and the significance of EGFR abundance using the Kaplan-Meier (KM) survival plot analysis for disease-free survival (DFS) and overall survival (OS). We performed a series of bioinformatics analyses to screen the crucial role of the EGFR gene in CC. Further, different transcription factors that are dysregulated due to EGFR abundance and their relevance were determined using computational tools in this review. Endogenous microRNAs (miRNA) that undergo changes due to alterations in EGFR during CC were identified using computational database and consolidated the information obtained with the published in the area of miRNA and EGFR with special reference to the initiation, sustenance and progression of CC. The current review aims to consolidate contemporary approaches for targeting CC using EGFR and highlight the current role of miRNA and genes that are differently regulated during CC involving EGFR mutations. Potential resistance to the available EGFR therapies such as TKIs and mABs and the need for better therapies are also extensively reviewed for the development of newer therapeutic molecules with better efficacy.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Biomarcadores , Biomarcadores Tumorais , Gerenciamento Clínico , Progressão da Doença , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Resultado do Tratamento , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/terapia
7.
Protein Pept Lett ; 28(3): 304-314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32938339

RESUMO

BACKGROUND: In individuals with ovarian cancer, an increase in the circulating level of the epidermal growth factor (EGF) is readily apparent. Ovarian cancer cells exhibit signaling pathway of the epidermal growth factor (EGFR) and respond to the EGF. Annona muricata (AM) has been shown to decrease ovarian cell proliferation however, role of AM in regulating EGF actions is not yet to be reported. OBJECTIVE: In this study, we proposed that the fractionated compound acetogenin can inhibit the activation of EGFR-regulated signaling cascades such as MAPK7 / PI3K-Akt / mTOR / STAT upon EGF stimulation. METHODS: Ethanolic extract was prepared for the whole AM plant and Thin Layer Chromatography (TLC) was performed to characterize the secondary metabolites and each fraction was assessed using kedde reagent for the presence of acetogenin. The effects of acetogenins were then tested on the survival of PA-1 ovarian cancer cells under basal and EGF stimulated conditions. To delineate the role of acetogenin in EGFR signaling cascades, the in silico docking studies were conducted. RESULTS: The fraction of acetogenin decreased the viability of EGF induced PA-1 ovarian cancer cells that indicating the EGF inhibitory effects of acetogenin. The docking studies specifically illustrated that when the acetogenin binding with tyrosine kinase (TK) and regulatory unit (RU) which subsequently resulted in a reduction in EGF induced the survival of PA-1 ovarian cancer cells. DISCUSSION: The vital regulatory role of acetogenin reported in this study indicate significant anticancer activities of acetogenin from AM. The in silico study of the acetogenin function predicted that it binds specifically to Asp837 (phosphor-acceptor site) of EGFR, essential for phosphorylation of substrates in the TK domain and RU which promote downstream signaling. CONCLUSION: Acetogenin isolated from AM effectively inhibited the survival of PA-1 ovarian cancer cells through impaired EGF signaling.


Assuntos
Acetogeninas/farmacologia , Annona/química , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Acetogeninas/química , Acetogeninas/isolamento & purificação , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...